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FOREWORD 

Cable-stayed bridges have become the form of choice over the past several decades for bridges 
in the medium-to-long-span range. In some cases, serviceability problems involving large 
amplitude vibrations of stay cables under certain wind and wind-rain conditions have been 
observed. This study was conducted in response to State transportation departments’ requests to 
develop improved design guidance for mitigation of excessive cable vibrations on cable-stayed 
bridges. The study included finite element modeling of representative individual cables as  
well as networks of cables to simulate dynamic behavior and evaluate various mitigation details 
such as dampers and crossties. The results of this study will be made available to the DC-45 
Cable-Stayed Bridge Committee for the Post-Tensioning Institute for consideration during their 
periodic updates of the Guide Specification, Recommendations for Stay Cable Design, Testing, 
and Installation.(1) 

This report will be of interest to bridge engineers, wind engineers, and consultants involved in 
the design of cable-stayed bridges. It is the first in a series of reports addressing aerodynamic 
stability of bridge stay cables that will be published in the coming months.  
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EXECUTIVE SUMMARY 

Cable-stayed bridges have been recognized as the most efficient and cost effective structural 
form for medium-to-long-span bridges over the past several decades. With their widespread use, 
cases of serviceability problems associated with large amplitude vibration of stay cables have 
been reported. Stay cables are laterally flexible structural members with very low inherent 
damping and thus are highly susceptible to environmental conditions such as wind and  
rain/wind combination. 

Recognition of these problems has led to the incorporation of different types of mitigation 
measures on many cable-stayed bridges around the world. These measures include surface 
modifications, cable crossties, and external dampers. Modifications to cable surfaces have been 
widely accepted as a means to mitigate rain/wind vibrations. Recent studies have firmly 
established the formation of a water rivulet along the upper side of the stay and its interaction 
with wind flow as the main cause of rain/wind vibrations. Appropriate modifications to the 
exterior cable surface effectively disrupt the formation of a water rivulet. 

External dampers and cable crossties have gained increasing popularity among bridge designers 
as measures for controlling wind-induced stay vibrations. External dampers dissipate the 
mechanical energy of vibrating cables and increase cable damping. Crossties transform 
individual stay cables into a cable network and increase the in-plane stiffness of a stay cable 
system. The increased system stiffness is translated into increased vibration frequencies of the 
system, especially in their fundamental modes. These increases in fundamental vibration 
frequencies due to the addition of cable crossties have been viewed as a merit to lower the 
potential of aerodynamic instabilities of the cable system subject to wind flow. 

However, the effectiveness of crossties as a means of counteracting undesirable stay cable 
oscillations has not been unequivocally established, and the potential benefits of increased 
fundamental frequencies of crosstied cable networks under realistic wind flow has not been 
substantiated by explicit analysis. The problem of potentially undesirable behavior of local 
vibration modes of crosstied cable networks has been pointed out by other researchers. Local 
modes of vibration are characterized by a set of intermediate segments of specific cables 
involved in the oscillation of a cable network. 

External dampers provide mitigation effects through dissipating the mechanical energies of 
vibrating cables. However, the mitigation effectiveness of these dampers depends on the 
geometrical and mechanical properties of the cable-damper assemblies and the characteristics of 
wind flow. Also, there would be synergistic effects from a combined use of cable crossties and 
external dampers. No detailed studies have been reported in the literature that address the 
combined use of cable crossties and external dampers. 

The objective of this study is to supplement the existing knowledge base on some of the 
outstanding issues of stay cable vibrations and to develop technical recommendations that may 
be incorporated into design guidelines. Specifically, this project focuses on the effectiveness of 
cable crossties, external dampers, and the combined use of crossties and dampers. Finite element 
simulations are carried out on the stay cable systems of constructed stay cable bridges under 
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realistic wind forces in order to address these issues. Explicit time-history analysis has enabled 
the performance of stay cable systems with different mitigation strategies to be assessed and 
compared for their relative advantages and disadvantages.  

This current study indicates that the effectiveness of cable crossties as a mitigation measure 
depends on the configuration of stay cables and the condition of wind flow. The optimal 
provision of crossties for a given stay system depends on the nature of the design wind event to 
be used. For example, stay cable networks with overly equipped crossties are not very effective 
to mitigate highly turbulent wind events. Stay networks with large crosstie quantities have 
increased fundamental frequencies and tend to pose greater potential for resonance with highly 
turbulent wind excitations. A medium-to-low level of crosstie provision helps to combat high-
frequency dominant wind events more effectively. 

Conversely, analysis indicates that external viscous dampers are very effective in controlling 
vibrations of stay cables subjected to wind events containing appreciable high-frequency 
components. It was also found that combined use of cable crossties and external dampers is 
effective in combating a wide range of wind events containing both low- and high-frequency 
components. In particular, external dampers attached at crosstie anchorages to the bridge deck 
are found to be much more efficient than dampers attached to individual stays. Dampers attached 
to individual cables are very limited in their influence on cable damping due to the close 
proximity of the dampers to the anchorages of the cables. 
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CHAPTER 1: INTRODUCTION 

Cable-stayed bridges, with their high cost efficiency and unique aesthetic features, have firmly 
established their position for use in medium-to-long-span bridges. The engineering principles of 
stay cables were originally borrowed from the suspension cables and post-tensioning technology. 
However, recent advances in materials engineering, construction technology, and analytical 
capabilities further accelerated the adoption of cable-stayed bridges as the desired structural 
form. The range of span length for cable-stayed bridges has been expanded in either direction, 
being increasingly shorter and increasingly longer. 

Stay cables are laterally flexible members with low fundamental frequency and limited inherent 
damping. Without additional damping from external sources, stay cables are susceptible to large 
amplitude oscillations due to excitations from wind and rain/wind combined action as well as 
during construction.(2) Cumulative fatigue damage to the cable assemblies resulting from such 
vibrations has become an important issue and has led to the incorporation of some mitigation 
measures such as surface modifications, cable crossties, and external dampers into the design  
of stay cables. 

A substantial amount of research on this subject had been conducted by researchers from 
academia, consulting firms, and cable suppliers in the United States and abroad. A recent 
research study under the coordination of the Federal Highway Administration investigated the 
wind-induced vibration of stay cables.(3) The objective of the study was to develop a set of 
uniform design guidelines for vibration mitigation of stay cables.  

A series of wind tunnel tests and analytical studies were conducted, and relevant databases were 
generated. The wind tunnel tests were conducted to study different mechanisms of wind-induced 
vibration of stay cables, and two databases covered the reference materials retrieved from 
available literature and the inventory of U.S. cable-stayed bridges, respectively. Researchers 
developed theories and conducted an analysis of the behavior of cable crossties and external 
dampers in the context of vibration mitigation of stay cables. 

Useful new theories were developed, and some existing theories were extended dealing with 
linear and nonlinear viscous dampers and cable crossties. The theories were validated, and the 
effectiveness of mitigation measures was demonstrated via comparison with field measurements 
on several U.S. cable-stayed bridges. Based on the findings and information from the study, 
some tentative design guidelines were proposed for mitigation of wind-induced stay  
cable vibrations.  

However, some of the analytical procedures developed from this study are complicated and may 
not be suitable for routine use by engineers in designing mitigation measures. Also, the study did 
not include explicit simulations of the behavior of stay cable systems subjected to realistic wind 
events when the cable systems are equipped with different types of mitigation measures. The 
free-vibration analysis method developed from the study offers useful insight into the mode-
frequency behavior of stay cable systems networked with crossties; however, an explicit time-
history analysis would be necessary to verify the implications derived from such an analysis.  
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This lack of information led to the current follow-up research study to investigate the 
effectiveness of cable crossties and external dampers in mitigation of wind-induced stay cable 
vibrations. Explicit numerical simulations of the behavior of stay cable systems, augmented with 
different types of mitigation measures, were conducted using the finite element method (FEM). 
Particular emphasis was placed on investigating the effectiveness of different strategies of 
mitigation involving cable crossties, external dampers, and combinations of the two. Also,  
the dependence of mitigation effectiveness on input wind conditions was analyzed.  

Some existing theories on the vibration of taut strings with different levels of complexity are 
reviewed in chapter 2 followed by preliminary numerical analysis of stay cable vibrations using 
simplified models in chapter 3. Also included in chapter 3 is an illustrative application to the 
Fred Hartman Bridge in Houston, TX, for which analysis conducted by other researchers is 
available for comparison and benchmarking. The free-vibration and time-history analysis of stay 
cable systems equipped with crossties are covered in chapters 4 and 5, respectively. Chapters 6 
and 7 discuss the time-history analysis of stay cable systems with external dampers and external 
dampers combined with crossties, respectively. 

 4 



CHAPTER 2: THEORETICAL BACKGROUND 

VIBRATION OF TAUT STRINGS 

The governing equation for the free transverse vibration of a taut string is as follows:(4) 

 
Figure 1. Equation. Equation of motion (EOM) for a taut string. 

Where:  

H = Axial tension force in a string or cable. 
y = Transverse in-plane displacement due to vibration. 
ρ  = Mass density per unit volume. 
A = Cross-sectional area of the string, beam, or cable.  
t = Time. 
x = Distance. 

The equation in figure 1 may be rewritten as follows: 

 
Figure 2. Equation. One-dimensional wave propagation. 

Where c is the phase velocity, which is defined as follows: 

 
Figure 3. Equation. Phase velocity. 

Applying the method of separation of variables, a general solution to the equation from figure 1 
with a fixed-fixed end condition may readily be derived as follows: 

 
Figure 4. Equation. General solution of EOM of a taut string. 

Where: 

n = Natural angular frequency of the nth mode of vibration.  
kn = Wave number of the nth mode of vibration. 
Cn = Amplitude of in-plane displacement due to vibration. 

n = Phase angle of time-dependent part of transverse in-plane displacement due to vibration. 
n = Mode number. 

  

ω 

α 
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The angular frequencies and wave numbers are not independent of each other but are interrelated 
as follows: 

 
Figure 5. Equation. Relationship between angular frequency and wave number. 

Where:  

L = Length of the string.  

The equation in figure 4 indicates that the motion of the string is represented by a superposition 
of standing waves with mode shapes of xknsin  and time-varying amplitudes of .  

The natural frequencies, n, are the eigenvalues representing the discrete frequencies at which 
the system is capable of undergoing harmonic motion. 

The equation in figure 1 is a linearized EOM in which nonlinearities arising from finite sag are 
ignored. Note that the only significant parameters in figure 1 through figure 5 are L, H, and A. 
Also note that from the equation in figure 5, n is proportional to the mode number, n.  

From the equations in figure 3 and figure 5, the cable tension H can be determined from the 
fundamental natural frequency, f, as follows: 

 
Figure 6. Equation. Cable tension. 

f, in Hz is related to the angular frequency  such that f = /2 .  

VIBRATION OF CLASSICAL BEAMS 

The governing equation for the free transverse vibration of a Bernoulli-Euler beam is given by 
the following:(4) 

 
Figure 7. Equation. EOM for a classical beam. 

Where:  

E = Young’s modulus. 
I = Moment of inertia. 
 
 

 

 

Cn cos( nt – αn) ω 

ω 

ρ 
ω 

ω ω π 
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The equation in figure 7 may be rewritten as follows: 

 
Figure 8. Equation. EOM for a classical beam, rewritten with vibration parameter. 

Where a is defined as the vibration parameter for classical beam, which can be solved as follows: 

 
Figure 9. Equation. Vibration parameter for a classical beam. 

Note that the equation in figure 8 is not of the wave equation form and that a does not have the 
dimension of velocity. Applying the method of separation of variables, a general solution to the 
equation in figure 8 with a pinned-pinned end condition can be derived and takes the form of the 
equation in figure 4, with n and kn being interrelated as follows: 

 
Figure 10. Equation. Relationship between angular frequency and wave number. 

The significant parameters in this formulation are L, EI, and A. Note that n ∝ n2. 

VIBRATION OF TAUT STRINGS WITH FLEXURAL STIFFNESS 

The governing equation for the free transverse vibration of a taut string with flexural rigidity or, 
equivalently, a classical beam with axial tension, is given by the following equation: 

 
Figure 11. Equation. EOM for a taut string with flexural stiffness. 

A general solution to the equation in figure 11 with a pinned-pinned end condition can be 
derived and again takes the form of the equation in figure 4, with n and kn being interrelated  
as follows: 

 
Figure 12. Equation. Relationship between angular frequency and wave number for a 

string. 

 

 

ω 

ρ ω 
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Or equivalently as follows: 

 
Figure 13. Equation. Relationship between angular frequency and wave number for a 

beam. 

Where:  
ρ L = Cable mass per unit length. 
ξ  = Flexural stiffness parameter. 

nb = Natural angular frequency of a classical beam in the nth mode of vibration. 
ns = Natural angular frequency of the taut string in the nth mode of vibration. 

The parameter ξ in figure 12 and figure 13 is defined as follows:(5) 

 
Figure 14. Equation. Flexural stiffness parameter. 

For the equation in figure 11, the first term, accounting for the effect of flexural stiffness, is 
added to the taut-string equation presented in figure 1. The equation in figure 12 indicates that 
the natural vibration frequencies of a taut string with flexural rigidity can be expressed in terms 
of those of the simple taut string when appropriate factors are multiplied. The same case may be 
viewed as a beam with axial tension, and the natural frequencies can be expressed in terms of 
those of the beam with appropriate factors multiplied as shown in figure 13. The flexural 
stiffness parameter defined by the equation in figure 14 represents the relative influence of the 
axial tension over the flexural stiffness in cable vibration.  

The solutions presented in figure 12 and figure 13 are for cables with pinned-pinned end 
conditions. Analysis of cables with fixed-fixed end conditions is more complex and requires the 
solution of transcendental equations. 

VIBRATION OF TAUT STRINGS WITH FLEXURAL STIFFNESS AND SAG-
EXTENSIBILITY 

The governing equation for the free transverse vibration of a taut string with transverse flexural 
rigidity and sag-extensibility is as follows:(6,7) 

 
Figure 15. Equation. EOM for a taut string with flexural stiffness and sag-extensibility. 

  

ω 
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Where: 

h = Horizontal component of tension force due to vibration. 
ys = Transverse in-plane displacement due to weight.  
 
No closed-form solution to the equation in figure 15 is available; however, approximate solutions 
for certain boundary conditions are available. The vibration frequencies of a cable with fixed-
fixed end condition can be expressed in terms of those of the taut string as follows: 

 
Figure 16. Equation. Approximate solution to the EOM for a taut string with flexural 

stiffness and sag-extensibility. 

Where: 
α  = Correction factor for sag-extensibility effects, which is defined in figure 17. 
β n = Bending stiffness correction factor for nth mode of vibration. 

 = Mass parameter. 

 
Figure 17. Equation. Correction factor for sag-extensibility and bending stiffness. 

The sag-extensibility parameter, 2, is defined as follows: 

 
Figure 18. Equation. Sag-extensibility parameter. 

Where: 
θ  = Inclination angle of the cable.  
g = Gravitational constant.  
Le = Effective length of the cable, which is defined as follows: 

 
Figure 19. Equation. Effective length of cable. 

The additional tension h due to cable vibration adds nonlinearity to the formulation and is 
determined by the equation in figure 20. 

µ 
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Figure 20. Equation. Additional tension force due to cable vibration. 

The parameter  in figure 16 is given by the following: 

 
Figure 21. Equation. Correction factor for sag-extensibility. 

The parameter  in figure 16 is given by the following: 

 
 Figure 22. Equation. Mass parameter. 

The two parameters 2 and  play a major role in the formulation in figure 14 and figure 15. The 
relationship of the equation in figure 16 is known to provide a good approximation when 2 < 3 
and  > 50, and many stay cables in cable-stayed bridges fall within this range.  

α 

µ 

µ = λ2 for n = 1 (in-plane) 
µ = 0 for n > 1 (in-plane) or for all n (out-of-plane) 

λ ξ 
λ 
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CHAPTER 3: PRELIMINARY ANALYSIS OF STAY CABLE VIBRATIONS  

INTRODUCTION 

This chapter illustrates some common issues on finite element analysis of stay cables using 
examples. First, single cables with varying degrees of complexity were treated. Then, systems 
with two stay cables interconnected with a transverse crosstie were analyzed. Finally, a stay 
cable system in an actual cable-stayed bridge that was previously analyzed by other investigators 
using a non-FEM was analyzed using FEM, and the results were compared.  

For analysis, finite element analysis software SAP2000® was used.(8) Beam elements with 
appropriate properties were used to model the stay cables and crossties, and the P-delta  
analysis technique was used to account for the effects of pre-tensioned forces in the stay  
cables and crossties.  

NUMERICAL MODELING AND ANALYSIS OF STAY CABLES  

Taut String Model 

In the first example, the transverse vibration of a stay cable, modeled as a taut string with fixed 
ends, was analyzed using FEM and compared with the theoretical solution. The cable had the 
following fictitious properties:  

• Length (L) = 1,000 inches (25.4 m).  

• Pre-tension (H) = 10 kip (44.5 kN). 

• Mass density per unit length (ρ A) = 0.222 lbm/inch (3.96 kg/m), which approximately 
simulates a steel wire with a diameter (D) of 1 inch (25.4 mm).  

A beam element with zero flexural stiffness and subjected to axial tension was used to model a 
taut string. (In practice, a negligibly small number is used for flexural stiffness to avoid 
numerical instability.)  

An illustration of the cable along with the input data and sample results is presented in figure 23. 
The results from finite element analysis are shown to match theoretical solutions. T1 and T2 
denote the period of the first and second mode, respectively. The first 4 vibration mode shapes 
calculated are shown in figure 24, and the natural vibration frequencies for the first 10 modes are 
shown in figure 25. The natural frequency is a linear function of the mode number. 

 

11 



 
Figure 23. Illustration. Analysis of a simple taut string. 

 
Figure 24. Image. The first four mode shapes for the vibration of a taut string. 

 

L= 1000 in, H = 10 kips, ρA = .222 lbm/in  
  

Analysis Results: 
Theory: T1=0.4797 sec, T2=0.2398 sec 
FEM: T1=0.4797 sec, T2=0.2399 sec 

H 
EI = 0 
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Figure 25. Graph. Natural vibration frequencies of a taut string. 

Classical Beam 

The vibration of an Euler-Bernoulli (or classical) beam with hinge-hinge end conditions was 
analyzed using FEM and compared with theoretical solutions. The beam has the same length and 
density as the string model discussed previously. The beam is assumed to have a circular cross 
section with a diameter of 1 inch (25.4 mm) and is made of steel with a Young’s modulus of 
2.9E+7 psi (200 GPa).  

An illustrative problem with sample input and output data is presented in figure 26. The results 
from the numerical analysis match the theory. The first 10 natural frequencies are presented in 
figure 27. The natural frequency of a classical beam is a quadratic function of the mode number, 
as predicted by the equation in figure 10. 

 
Figure 26. Illustration. Analysis of a classical beam. 
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Figure 27. Graph. Natural vibration frequencies of a classical beam. 

Taut String with Flexural Stiffness 

The vibration of a taut string with finite flexural stiffness (or a beam-column) was analyzed. A 
flexural stiffness parameter ( ) of 82.4 was computed according to the equation in figure 14, and 
hinge-hinge end conditions were used. The problem is described schematically in figure 28. 
Results from numerical analysis match the analytical solutions discussed in the section, 
“Vibration of Taut Strings with Flexural Stiffness” in chapter 2. 

 
Figure 28. Illustration. Analysis of a taut string with finite flexural stiffness and pinned-

pinned ends. 

The natural frequencies of the taut string with flexural stiffness and those of the taut string 
without flexural stiffness are shown in figure 29. It can be seen that taking into account the 
flexural stiffness generally increases the natural frequencies of its transverse vibration. The 
significance of flexural stiffness, however, is very limited for lower-order vibration modes but 
picks up noticeably with increasing mode number. 
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Figure 29. Graph. Natural vibration frequencies of a taut string with finite flexural 

stiffness and hinge-hinge supports. 

A similar problem with fixed-end conditions was also analyzed. The finite element solutions 
match those predicted by an approximate formula by Mehrabi and Tabatabai, as seen in  
figure 30.(6) No closed form solution is known to exist for this problem.  

 
Figure 30. Illustration. Analysis of a taut string with finite flexural stiffness and fixed-fixed 

ends. 

In figure 31, the influence of cable end conditions, whether fixed or hinged, on natural 
frequencies is compared. Relatively small differences are observed between the two cases. 
However, the differences increase with increasing mode number. 
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Figure 31. Graph. Natural vibration frequencies of a taut string with finite flexural 

stiffness and two different support conditions. 

TWO-CABLE SYSTEM WITH CROSSTIE 

A simple system of two twin cables interconnected by a cross tie was analyzed (see figure 32). 
An optional tie to the ground was also considered. Each cable has the same dimensions and 
properties as the single cable introduced in the previous example (L = 1,000 inches (25.4 m),  
H = 10 kip (44.5 kN), L = 0.222 lbm/inch (3.96 kg/m), D = 1 inch (25.4 mm), fixed-fixed ends). 
The ties are modeled as an elastic spring, and a number of combinations of stiffness values  
(K and KG) are considered, where K is the stiffness between two cables, and KG is the stiffness 
between the cable and the ground or bridge deck.  

 
Figure 32. Illustration. Two-cable system with crossties. 

First, the in-plane free vibration of this system was analyzed. Figure 33 shows the evolution  
of the natural frequency of a system when K = 0 and KG = 0 (i.e., when there are no crosstie  
or anchorage connecting the two cables). Figure 34 shows results when K is finite (K = 
0.1 kip/inch (7.5 kN/m)) and KG = 0. It can be seen from figure 34 that the frequencies for  
n = 2, 6, 10, … are increased by the presence of a crosstie (spring) between the cables. Figure 35 
shows the evolution of mode-frequencies when both K and KG have finite spring constants.  
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Figure 33. Graph. Mode-frequency evolution for a two-cable system with K = 0 and KG = 0. 

 
Figure 34. Graph. Mode-frequency evolution for a two-cable system with K = finite and  

KG = 0. 

 
Figure 35. Graph. Mode-frequency evolution for a two-cable system with K = finite and  

KG = finite. 
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From figure 35, it is apparent that anchoring the crosstie to the ground increases the frequencies 
(for n = 1, 2, 5, 6,…) of the two-cable system. Figure 36 shows the evolution of natural 
frequency of a system when both springs are rigid (K → infinite, KG → infinite). Due to the rigid 
support of the cables at their midpoints, the first two vibration modes of the unrestrained free 
cables were suppressed, and thus the first four consecutive modes have the same frequencies, etc. 

 
Figure 36. Graph. Mode-frequency evolution for a two-cable system with K → infinite and 

KG → infinite. 

Two selected mode shapes from the finite element analysis in comparison with those  
presented by Caracoglia and Jones are shown in figure 37.(9) The crosstie deforms only for 
modes n = 2, 6, 10, etc. For all other modes, the crosstie moves as a rigid body. The same 
parameters (K = 0.1 kip/inch (7.5 kN/m) and KG = 0) as in the case of figure 34 were used.  
An analytically based and numerically implemented method, which does not involve any finite 
element procedure, was developed by Caracoglia and Jones and used for the analysis of the  
in-plane free-vibration of a set of interconnected taut cable elements.(9) The results from the  
two different approaches are the same. 
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Reprinted with permission from Elsevier 

Figure 37. Image. Comparison of mode shapes from finite element analysis (top) and from 
Caracoglia and Jones (bottom).(9) 

The mode-frequency evolution of a two-cable system with various combinations of crosstie 
stiffnesses was analyzed and is presented in figure 38. The top enveloping curve corresponds  
to the case with a rigid cross tie and a rigid ground tie. The bottom enveloping curve corresponds 
to the case with no cross tie and no ground tie. The two other cases fall in between these  
two extreme cases, and the corresponding mode-frequency evolution curves stay within the top 
and bottom enveloping curves of these two extreme cases. The curves clearly show the stiffening 
effect of the crosstie and anchorage, resulting in increased natural frequencies of the system.  

 
Figure 38. Graph. Mode-frequency evolution for a two-cable system with various 

combinations of crosstie stiffnesses. 
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FULL-SCALE STAY CABLE NETWORK 

Vibration Mode Shapes 

Analysis was extended to a real full-scale cable network. The Fred Hartman Bridge in  
Houston, TX, was selected for illustration and comparison purposes. Photos of the bridge and 
cable network are presented in figure 39 and figure 40, respectively. The results from finite 
element analysis are compared with those from the analytical method by Caracoglia and Jones 
wherever possible.(10)  

 
Figure 39. Photo. Fred Hartman Bridge in Houston, TX. 

 
Figure 40. Photo. The cable network of the Fred Hartman Bridge in Houston, TX. 

Finite element discretization of a network of main-span stay cables (A-line) of the Fred Hartman 
Bridge is shown in figure 41. The stay cables are interconnected with three lines of crossties. The 
configuration shown represents an equivalent two-dimensional (2D) network reduced by 
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Caracoglia and Jones from the original three-dimensional (3D) network.(10) The analytical 
method developed by Caracoglia and Jones is designed for 2D networks, whereas finite element 
analysis simulates up to 3D configurations. For comparison purposes, however, the 2D 
equivalent network generated by Caracoglia and Jones is used here. Analysis is confined to the 
in-plane free vibration of the network. 

 
Figure 41. Image. Finite element model for the stay cable system of the Fred Hartman 

Bridge in Houston, TX. 

The first four in-plane vibration mode shapes of the cable network from the finite element 
analysis and from Caracoglia and Jones are shown in figure 42. The mode shapes from these  
two different calculations are the same. Some minute discrepancies are attributed to intrinsic 
differences in the analysis procedure of the two approaches. The modes shown in figure 42 are 
global in nature in that the majority of the cable segments participate in the oscillation. For  
n = 1 and 2, modes are clearly global. However, for n = 3 and 4, some local behaviors are 
superimposed on global behaviors.  
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Reprinted with permission from Elsevier 

Figure 42. Image. First four vibration mode shapes of the Fred Hartman Bridge stay cable 
system from finite element analysis (top) and from Caracoglia and Jones (bottom).(10) 

As the mode number increases, local modes, in which the response of the network is limited  
to some intermediate segments of cables, become evident. Figure 43 shows mode shapes for  
n = 5–8. The wavelengths in these vibration modes are dictated by the distances between  
two adjacent crossties. Subsequent vibration modes, densely populated in frequency, are seen  
to be a permutation of a similar pattern dominated by a few cables. Local modes are found to  
dominate for up to n = 28.  
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Reprinted with permission from Elsevier 

Figure 43. Image. Vibration mode shapes 5–8 of the Fred Hartman Bridge stay cable 
system from finite element analysis (top) and from Caracoglia and Jones (bottom).(10) 

However, a second set of global network modes occurred at n = 29 and continued for a few 
modes and then local modes resumed. This global-local pattern repeats thereafter. Figure 44 
shows mode shapes for n = 29–32. Global modes of vibration are noticeable for n = 29–31, and 
thereafter, local modes resumed. 

 
Reprinted with permission from Elsevier 

Figure 44. Image. Vibration mode shapes 29–32 of the Fred Hartman Bridge stay cable 
system from finite element analysis (top) and from Caracoglia and Jones (bottom).(10) 
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Mode-Frequency Evolution 

The modal characteristics of the network are illustrated in figure 45 in the mode-frequency 
evolution chart where the natural frequency of the network is plotted as a function of the  
mode number.  

 
Figure 45. Graph. Mode-frequency evolution for the Fred Hartman Bridge stay cable 

system from finite element analysis. 

The figure shows that a sequence of global modes are followed by a plateau of densely populated 
local modes, which is then followed by a second set of global modes, etc. This pattern of 
consecutive steps is typical of the modal behavior of a cable network. Figure 45 shows that the 
fundamental frequency (n = 1) of the network is bracketed between the fundamental frequencies 
of the longest and shortest cables. The presence of crossties is seen to enhance the overall 
performance of the network by increasing their natural frequencies, especially those of global 
modes. However, analysis also suggests that the presence of crossties may not necessarily be 
beneficial at plateau frequencies due to potentially undesirable effects associated with densely 
populated local modes. 

The mode-frequency evolution chart generated by Caracoglia and Jones is presented in figure 46 
for comparison.(10) The finite element results presented in figure 45 correspond to their analysis 
case, “NET_3C.” Overall, the results from both approaches are the same. 
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Reprinted with permission from Elsevier 

Figure 46. Graph. Mode-frequency evolution for the Fred Hartman Bridge stay cable 
system.(10) 

Variations in Crosstie Configuration 

As a modification to the original configuration, two shorter crossties were tied to the ground  
(i.e., the deck), as shown in figure 47. The resulting mode shapes (for n = 1 and 2) are presented 
in figure 48. The first mode is quite similar to that of the previous (reference) network. However, 
the second mode is rather different from the case of the reference network due to anchoring of 
the middle line of crosstie. 

 
Figure 47. Image. Finite element model for the stay cable system with some crossties 

anchored to the deck. 
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Reprinted with permission from Elsevier 

Figure 48. Image. First two vibration mode shapes for the model shown in figure 47 from 
finite element analysis (top) and from Caracoglia and Jones (bottom).(10) 

The effect of crosstie anchoring was examined in terms of the mode-frequency evolution 
behavior, which is shown in figure 49. The addition of grounding ties significantly increased the 
frequencies of global modes but did not increase the frequencies of local modes by a significant 
amount. Grounding of crossties apparently made the network stiffer with respect to its global 
behavior, but it practically did not affect the local vibration responses of individual cables. 

 
Figure 49. Graph. Comparison of mode-frequency evolution for models shown in figure 41 

(reference) and figure 47. 

As another fictitious variation to the original configuration, the geometry of the two shorter 
restrainers was modified, as shown in figure 50. This modification helps avoid excessive stretch 
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of the segments of some cables due to the grounding of crossties. This modification would avoid 
undesirable stress concentrations in these cable segments.  

 
Figure 50. Image. Finite element model for the stay cable system with a varied crosstie 

configuration (variation 1). 

The first four vibration mode shapes for this variation are shown in figure 51, and the mode-
frequency evolution is shown in figure 52. This variation renders slightly lower frequencies of 
global modes and yet somewhat higher frequencies of local modes. The step behavior of the 
original configuration is slightly rounded. Comparing figure 51 with figure 42 suggests an 
improvement of this variation over the original configuration by avoiding the presence of very 
short segments of cables.  

 
Figure 51. Image. Vibration mode shapes 1–4 for the model shown in figure 50. 
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Figure 52. Graph. Comparison of mode-frequency evolution for models shown in figure 41 

(reference) and figure 50. 

The third variation to the original crosstie configuration involves only a single line of crossties as 
shown in figure 53. Figure 54 shows the first four mode shapes of this variation, and figure 55 
shows the corresponding mode-frequency evolution (in solid diamonds) in contrast to that of the 
reference configuration. Clearly, it can be seen that the single line of crossties provides less 
reinforcement to the cable system. More frequent global-local steps occur as the quantity of 
crossties is reduced. 

 
Figure 53. Image. Finite element model for the stay cable system with a single crosstie line 

(variation 2). 
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Figure 54. Image. Vibration mode shapes 1–4 for the model shown in figure 53. 

 
Figure 55. Graph. Comparison of mode-frequency evolution for models shown in figure 41 

(reference) and figure 53. 

Finally, the mode-frequency evolution behavior of the original network over extended mode 
numbers (up to n = 100) is shown in figure 56. Multiple repeated global-local behaviors can  
be seen.  
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Figure 56. Graph. Mode-frequency evolution for higher mode numbers. 
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CHAPTER 4: FREE-VIBRATION ANALYSIS OF STAY CABLE SYSTEMS WITH 
CROSSTIES 

INTRODUCTION 

The in-plane stiffness of stay cables increases when they are connected by means of a set of 
transverse cables referred to as “crossties.” Crossties have been introduced over the past several 
decades as a means of counteracting large-amplitude vibrations of the stays in cable-stayed 
bridges. Crossties are also known to reduce the cable sag variations among stay cables of various 
lengths.(11) From the dynamics point of view, the presence of lateral constraints modifies the 
oscillation characteristics of the stay group. Also, the interconnection of individual stay cables 
results in a complex cable network. As a result, a closed-form solution to a structural analysis 
problem of such network is elusive. 

A number of studies on crossties for stay cables have been conducted. (See references 9, 10, 12, 
and 13). However, the dynamic behavior of a stay cable system networked with crossties is still 
not clearly understood, and the effectiveness of crossties is not well established. In this study,  
the effectiveness of crossties in mitigation of stay cable vibrations was numerically investigated. 
Both modal analyses and time-history analyses were conducted on a set of stay cables from the 
recently completed Bill Emerson Memorial Bridge in Cape Girardeau, MO. The modal (i.e., 
free-vibration) analysis is discussed later in this chapter. The time-history (i.e., forced-vibration) 
analysis under transient wind loads is discussed in chapter 5.  

Numerical analysis was conducted using the general purpose finite element code SAP2000®.(8) 

An elevation view of the subject bridge is shown in figure 57 with the cables under study circled 
in blue. The bridge has two H-shaped towers supporting 128 stays. The main span of the bridge 
is 1,148 ft (350 m) long, and two side spans are each 468 ft (143 m) long. The finite element 
discretization of a side section of stay cables is shown in figure 58. Four parallel lines of 
crossties perpendicular to the longest cable and equally dividing this cable into five segments are 
considered as the reference configuration. A few other configurations of crossties are also 
considered later for comparison purposes. The basic information on the bridge, as provided by 
the designer, is presented in table 1. Data on cable-end coordinates and cable properties are 
presented in table 2 and table 3.  
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Figure 57. Illustration. Bill Emerson Memorial Bridge in Cape Girardeau, MO. 

 
Figure 58. Image. Finite element discretization of a cable system with four lines of crossties. 
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Table 1. Basic information on the Bill Emerson Memorial Bridge. 
Bridge Name Cape Girardeau/Bill Emerson Memorial 
Owner State of Missouri 
Designer HNTB 
Year Design Completed 1996 
Year Construction Completed 2003 
Superstructure Type Steel composite 
Superstructure Width 96 ft (29.26 m) 
Tower Type H-shaped 
Main Span Length 1,150 ft (350.52 m) 
Side Span Length 468 ft (142.65 m) 
Number of Stays 128 
Number of Stay Planes 2 
Cable Type Seven-wire strand 
Strand Diameter 0.62 inch (1.52 cm) 
Grout Cement 
Outer Sheathing High-density polyethylene  
Supplemental UV Protection None 
Number of Cross Tie Lines—Side Span 4 
Number of Cross Tie Lines—Main Span 4 
Crosstie Diameter 0.81 inch (2.06 cm) 
Supplemental Damper Neoprene 
Damper Location Both ends 
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Table 2. Coordinates of cable ends on the Bill Emerson Memorial Bridge. 

Cable 
Number 

Tower-End 
X-Coordinate 

(ft) 

Tower-End 
Z-Coordinate 

(ft) 

Deck-End 
X-Coordinate 

(ft) 

Deck-End 
Z-Coordinate 

(ft) 
1 -5.77 310.3 -460.6 66.0 
2 -5.77 305.3 -448.6 66.5 
3 -5.77 300.3 -436.6 66.9 
4 -5.77 295.3 -424.7 67.3 
5 -5.77 290.2 -413.1 67.6 
6 -5.74 285.3 -378.4 68.8 
7 -5.67 280.4 -343.8 70.0 
8 -5.64 275.4 -309.2 71.3 
9 -5.67 270.5 -274.8 72.5 
10 -5.61 265.6 -240.3 73.7 
11 -5.61 260.7 -205.8 75.0 
12 -5.97 255.4 -171.3 76.3 
13 -6.04 249.4 -137.1 77.4 
14 -6.04 242.7 -102.7 78.7 
15 -7.71 230.8 -68.4 79.9 
16 -7.77 213.5 -34.1 81.4 

1 ft = 0.305 m 
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Table 3. Cable properties on the Bill Emerson Memorial Bridge. 

Cable 
No. 

Chord 
Length 

(ft) 

Outer 
Diameter 

(inch) 

Young's 
Modulus 
(106 psi) 

Cable 
Tension 

(kip) 

Mass 
Density 
(lbm/ft3) 

Unit 
Weight 
(lbf/ft3) 

Unit 
Weight 

per 
Length 
(lbf/ft) 

Frequency 
String 
Theory 

(Hz) 
1 516.3 10.75 2.261 1019.6 162.1 162.1 102.1 0.549 
2 503.1 10.75 2.261 1069.4 162.1 162.1 102.1 0.577 
3 490.0 10.75 2.180 1019.6 159.0 159.0 100.1 0.584 
4 476.9 8.62 2.768 979.6 172.7 172.7 70.0 0.703 
5 464.2 8.62 2.621 935.5 170.5 170.5 69.1 0.711 
6 431.0 8.62 2.523 901.3 168.0 168.0 68.1 0.758 
7 398.2 8.62 2.425 855.5 168.0 168.0 68.1 0.799 
8 365.8 8.62 2.425 827.4 168.0 168.0 68.1 0.855 
9 334.1 7.12 3.564 735.3 180.6 180.6 50.0 1.029 
10 303.1 7.12 3.444 672.4 177.0 177.0 49.0 1.095 
11 273.1 7.12 3.324 636.4 173.4 173.4 48.0 1.196 
12 243.7 7.12 3.204 591.2 169.8 169.8 47.0 1.305 
13 216.3 6.61 2.789 561.3 171.9 171.9 41.0 1.534 
14 190.3 6.61 2.468 463.1 167.7 167.7 40.0 1.603 
15 169.1 6.61 2.307 409.2 163.5 163.5 39.0 1.718 
16 147.7 6.61 2.227 380.2 163.5 163.5 39.0 1.894 

1 ft = 0.305 m 
1 inch = 25.4 mm 
1 psi = 6.89 kPa 
1 kip = 4.45 kN 
1 lbm/ft3 = 16.0 kg/m3 
1 lbf/ft3 = 0.157 kN/m3 
1 lbf/ft = 0.0146 kN/m 

The stay cables and crossties are modeled using the beam elements with their flexural stiffness. 
The pre-tension forces in stay cables and crossties are modeled using P-delta forces. The cable 
ends are assumed to be fixed to the deck and to the tower. Both the deck and the tower are 
assumed to be immobile relative to the stays for simplicity, and no parametric motion between 
the stays and the deck or tower is considered. Analysis is also focused on the in-plane motion of 
the stay system, with the out-of-plane motion being treated as an exception.  

NATURAL FREQUENCIES AND MODE SHAPES 

Free-vibration analysis of a structural system provides information on the system’s intrinsic 
vibration characteristics commonly expressed in terms of natural frequencies and the 
corresponding mode shapes. A set of homogeneous dynamic equilibrium equations for a system 
leads to an eigenvalue problem in which the eigenvalues are identified as the system’s natural 
vibration frequencies and the corresponding eigenvectors as the mode shapes. A change in 
structural condition causes changes in the natural frequencies and mode shapes. Therefore, the 
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influence of crossties on the vibration characteristics of a stay cable system may be explored by 
observing the mode-frequency evolution of the system. 

Figure 59 shows the first four in-plane vibration mode shapes and the corresponding natural 
frequencies, Fi, for a stay cable system with four lines of crossties. The first three modes are 
global in nature in that the large portion of the cable system participates in the motion. Local 
modes set in at the fourth mode and prevailed in subsequent modes. The next four modes, which 
are highly local in nature, are shown in figure 60. Some sample higher modes for n = 20–23 are 
presented in figure 61. These higher modes are characterized by localized vibration of cable 
segments divided by crossties. A local mode is governed by the geometry of internal elements  
of the system and is characterized by wavelengths corresponding to the distances between 
neighboring crossties.  

 
Figure 59. Image. In-plane vibration mode shapes 1–4 of a stay cable system with four lines 

of crossties. 
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Figure 60. Image. Vibration mode shapes 5–8 of a stay cable system with four lines of 

crossties. 

 
Figure 61. Image. Vibration mode shapes 20–23 of a stay cable system with four lines of 

crossties. 

The so-called “mode-frequency evolution” chart for a crosstied cable network (see figure 58) is 
presented in figure 62. The abscissa denotes the mode numbers and the ordinate the system’s 
natural frequencies. A similar approach was used by Abdel-Ghaffar and Khalifa and Caracoglia 
and Jones.(10,14) It is clear that incorporation of crossties into a stay system increases its natural 
frequencies for all modes. The first few modes, which are global in nature, are followed by a 
long series of local modes whose natural frequencies are densely populated over a narrow band 
of frequency. The solid triangle in figure 62 denotes the fundamental (n = 1) natural frequency of 
the longest cable, and the diamond that of the shortest cable. Note that the fundamental natural 
frequency of the crosstied system is bracketed between those of the longest and shortest cables. 
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Figure 62. Graph. Mode-frequency evolution for a stay cable system with four lines of 

crossties. 

Different design parameters that influence the mitigation effectiveness of a crosstied cable 
system was tested through finite element simulations. Specifically, the mode-frequency evolution 
characteristics are examined in detail.  

INFLUENCE OF CROSSTIE QUANTITY 

First, the influence of crosstie quantity (or the influence of the number of lines of crossties) on 
the system’s mode-frequency evolution behavior was studied. Figure 63 shows the finite element 
discretization of a cable system with two lines of crossties. Figure 64 and figure 65 show the first 
four and some intermediate (n = 20–23) mode shapes and the corresponding natural frequencies 
for this system. In figure 66, the mode-frequency evolution for this system is presented in 
comparison with that of the reference system with four lines of crossties. It can be seen that  
the two line-system exhibits lower natural frequencies than the four-line system especially for  
n = 4–23. It is to be noted that local vibration modes set in right after the fundamental mode  
(i.e., n = 2) for the two-line system.  
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Figure 63. Image. Finite element discretization of a cable system with two lines of crossties. 

 
Figure 64. Image. Vibration mode shapes 1–4 of a stay cable system with two lines of 

crossties. 

 39 



 
Figure 65. Image. Vibration mode shapes 20–23 of a stay cable system with two lines of 

crossties. 

 
Figure 66. Graph. Mode-frequency evolution for a stay cable system with two lines of 

crossties. 

Figure 67 shows the finite element discretization of a cable system with a single line of crossties. 
Figure 68 and figure 69 show the first four and some intermediate mode shapes (n = 20–23) and 
the corresponding natural frequencies for this system. The system’s mode-frequency evolution 
behavior is shown in figure 70. Again, the behavior of the reference (four-line) system is 
presented for comparison. The one-line system exhibits much lower natural frequencies than the 
reference system. It is difficult to distinguish global modes from local modes, and local modes 
appear to set in at the very first mode. 
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Figure 67. Image. Finite element discretization of a cable system with one line of crossties. 

 
Figure 68. Image. Vibration mode shapes 1–4 of a stay cable system with one line of 

crossties. 
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Figure 69. Image. Vibration mode shapes 20–23 of a stay cable system with one line of 

crossties. 

 
Figure 70. Graph. Mode-frequency evolution for a stay cable system with one line of 

crossties. 

A cable system without any crossties was also considered, and its finite element discretization is 
shown in figure 71. The first four mode shapes and some intermediate mode shapes (n = 20–23) 
for this system are shown in figure 72 and figure 73. For a cable system without crossties, the 
natural modes of the system consist of the natural modes of the individual cables. The first few 
system modes correspond to the fundamental modes of individual cables. However, at some 
point, higher modes of long cables begin to interlace with lower modes of short cables. The 
mode-frequency evolution behavior is shown in figure 74 along with that of the reference  
four-line system. Again, the efficiency of crossties in terms of enhancing the system’s natural 
frequencies is evident. The presence of step jumps in mode-frequency chart, which is 
characteristics of crosstied cable systems, is not seen in the case of the non-crosstied system. 
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Figure 71. Image. Finite element discretization of a cable system with no crossties. 

 
Figure 72. Image. Vibration mode shapes 1–4 of a stay cable system with no crossties. 
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Figure 73. Image. Vibration mode shapes 20–23 of a stay cable system with no crossties. 

 
Figure 74. Graph. Mode-frequency evolution for a stay cable system with no crossties. 

Another simulation was conducted with nine lines of crossties. Figure 75 shows the finite 
element discretization of a cable system with nine parallel lines of crossties. Figure 76 and  
figure 77 show the mode shapes for this system, n = 1–4 and n = 20–23. The mode-frequency 
evolution is presented in figure 78 as a comparison to the reference system. Distinction between 
global and local modes is clear; however, modes up to n = 25 generally engage a large portion of 
the segments and thus may be global in nature. A plateau of densely populated local modes 
appears at a much higher mode compared to the reference four-line system. 
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Figure 75. Image. Finite element discretization of a cable system with nine lines of crossties. 

 
Figure 76. Image. Vibration mode shapes 1–4 of a stay cable system with nine lines of 

crossties. 

 45 



 
Figure 77. Image. Vibration mode shapes 20–23 of a stay cable system with nine lines of 

crossties. 

 
Figure 78. Graph. Mode-frequency evolution for a stay cable system with nine lines of 

crossties. 

A comparison summary is presented in figure 79. Systems with zero, one, two, four, and nine 
lines of crossties are compared with respect to their mode-frequency evolution characteristics. 
Clearly, increasing the amount of crossties increases the natural vibration frequencies of the 
system, although the details of the increase pattern depend on the geometry of the crossties. 
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Figure 79. Graph. Comparison of the mode-frequency evolutions of a stay cable system 

with differing quantities of crossties. 

INFLUENCE OF CROSSTIE GEOMETRY 

The mitigation effectiveness of crossties should depend on the way the crossties are arranged  
for a given quantity. For example, figure 80 shows a cable system with eight zigzag lines of 
crossties, and figure 81 and figure 82 show selected mode shapes and the corresponding natural 
frequencies for this system. The first three modes are global in nature. The quantity of crossties 
of this system is comparable to that of the nine-line system shown in figure 75. The total 
cumulative length of crossties in the two cases in figure 75 and figure 80 are 994 and 1,063 ft 
(303 and 324 m), respectively. The quantity of the eight zigzag lines of crossties is slightly 
greater than that of the nine-line crossties.  

 
Figure 80. Image. Finite element discretization of a cable system with eight zigzag lines of 

crossties. 
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Figure 81. Image. Vibration mode shapes 1–4 of a stay cable system with eight zigzag lines 

of crossties. 

 
Figure 82. Image. Vibration mode shapes 20–23 of a stay cable system with eight zigzag 

lines of crossties. 

The mode-frequency evolution for this system is presented in figure 83. Also presented for 
comparison are those for the four-line and the eight-line systems. For comparable crosstie 
quantities, the straight-line (nine lines) system yields much higher natural frequencies than  
the zigzag (eight lines) system, especially at higher modes (i.e., n > 5). Note that the zigzag 
arrangement constitutes a larger quantity than the straight-line arrangement. It can also be seen 
that the straight line arrangement shifts the band of densely populated local modes to a much 
higher mode. 
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Figure 83. Graph. Mode-frequency evolution for a stay cable system with crossties of 

differing geometry. 

A system with a single crosstie line intersecting the stay cables at their mid-span was also 
considered (see figure 84) for comparison with a single straight-line system (see figure 67). 
Selected mode shapes and frequencies are shown in figure 85 and figure 86. The mode-
frequency evolution for this system is compared with those for the straight single-line crosstie 
and reference four-line crossties, as shown in figure 87. The straight single-line crosstie has a 
fundamental natural frequency (n = 1) slightly higher than that of the curved crosstie; however, 
overall, no appreciable difference can be observed between the two systems. 

 
Figure 84. Image. Finite element discretization of a cable system with one line of crossties 

interconnecting the midpoints of the cables. 
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Figure 85. Image. Vibration mode shapes 1–4 of a stay cable system with one line of 

crossties interconnecting the cable midpoints. 

 
Figure 86. Image. Vibration mode shapes 20–23 of a stay cable system with one line of 

crossties interconnecting the cable midpoints. 
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Figure 87. Graph. Mode-frequency evolution for a stay cable system with one line of 

crossties of differing geometry. 

INFLUENCE OF CROSSTIE DIAMETER 

The influence of crosstie size (or diameter) on the in-plane vibration behavior of a crosstied  
stay system was investigated. Figure 88 shows fundamental vibration modes (n = 1) for a  
four-line system with different crosstie diameters that are 0.5, 1.0, 2.0, and 10.0 times the 
diameter of the reference crosstie. The mode-frequency evolutions for these four different  
cases are presented in figure 89. 

 
Figure 88. Image. Fundamental vibration mode of a stay cable system with four lines of 

crossties of differing diameter. 
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Figure 89. Graph. Mode-frequency evolution for a stay cable system with four lines of 

crossties of differing diameter. 

Increasing the diameter of the crosstie increased the natural frequencies of the system up to a 
certain limit beyond which no appreciable increases take place. It can be seen that oversized 
crossties tend to render the system to be overly rigid and susceptible to local mode vibrations, 
which are potentially undesirable. The case with 10 times the reference diameter approximates a 
case of perfectly rigid crossties, and only localized vibration modes are allowed to take place in 
this extreme case. 

INFLUENCE OF OTHER PARAMETERS 

Influences of other design parameters, such as crosstie anchorage conditions, stay cable end 
conditions, and crosstie pretension level, on the mode-frequency behavior of a stay cable system 
were also investigated.  

Figure 90 shows a cable network with crossties not anchored to the deck, and the mode-
frequency behavior of this system is shown in figure 91. For comparison, the mode-frequency 
evolution of the reference system in which the crossties are anchored is also shown in figure 91. 
It can be seen that anchoring (or grounding) the crossties to the deck increases the overall 
stiffness of the system, thus increasing the natural frequencies of the system. The increase is 
most pronounced for the first few modes which are global in nature. The impact of crosstie 
anchorage on the localized vibration modes is minimal. Grounded crossties enhance the 
frequencies of global modes by more than 30 percent in the case shown.  
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Figure 90. Image. Finite element discretization of a cable system with four lines of crossties 

not anchored to the deck. 

 
Figure 91. Graph. Effect of crosstie anchorage (to the deck) on the mode-frequency 

evolution of a stay cable system with four lines of crossties. 

Figure 92 shows the influence of stay cable end conditions on the modal characteristics of a 
cable network. The figure shows that end conditions, whether fixed or hinged, do not affect the 
system’s modal behavior that much, except for very high vibration modes. As the mode number 
increases, the vibration wavelength becomes shorter, and the cable support conditions become 
increasingly significant. 
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Figure 92. Graph. Effect of cable end conditions on the mode-frequency evolution of a stay 

cable system with four lines of crossties. 

Figure 93 shows the sensitivity of the mode-frequency behavior of a system to pre-tension level 
in the crossties. The open circles denote the case of reference tension level, while the small 
closed circles denote the case of 10 times the reference pre-tension level. The two lines shown 
practically overlap entirely, and virtually no influence of pre-tension level can be observed.  
Pre-tension affects the transverse (or flexural) stiffness of crossties and the in-plane vibration of 
a cable network is not much sensitive to the transverse stiffness of crossties. However, crossties 
must be provided with appropriate levels of pre-tension to prevent slack of the crossties during 
design wind events. The analysis showed that as long as adequate levels of pre-tension are 
maintained, the pre-tension does not affect the system’s in-plane vibration behavior. Conversely, 
the transverse (i.e., out-of-plane) vibration is affected significantly by the pre-tension level, as is 
discussed in the following section. 

 
Figure 93. Graph. Effect of crosstie tension on the mode-frequency evolution of a stay cable 

system with four lines of crossties. 
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OUT-OF-PLANE BEHAVIOR 

It is well known that crossties are not effective in mitigation of out-of-plane vibration of stay 
cables due to their limited flexural stiffnesses. This fact and other related issues were verified 
through finite element analysis. The first four transverse vibration mode shapes and natural 
frequencies are presented in figure 94. Although crossties are not primarily designed to 
counteract the transverse vibrations of stay cables, they still provide some limited constraints  
to transverse vibrations. 

 
Figure 94. Image. Transverse vibration mode shapes 1–4 of a stay cable system with four 

lines of crossties. 

Figure 95 compares the transverse mode-frequency behavior of stay systems with and without 
crossties. It confirms the notion that crossties are ineffective in providing transverse constraints 
to a crosstied cable network. Very limited increases in natural frequency were observed.  
Figure 96 shows the influence of pre-tension level in crossties on the transverse vibration of 
stays. While the pre-tension level practically does not affect the in-plane behavior, it affects the 
out-of-plane behavior. Increased pre-tension leads to increased system frequency, which can be 
understood from the fact that increased pre-tension increases the flexural stiffness of the system. 
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Figure 95. Graph. Transverse mode-frequency evolution for a stay cable system with and 

without crossties. 

 
Figure 96. Graph. Effect of cable tension on the transverse mode-frequency evolution for a 

stay cable system with four lines of crossties. 
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CHAPTER 5: TIME-HISTORY ANALYSIS OF STAY-CABLE SYSTEMS WITH 
CROSSTIES 

INTRODUCTION 

In chapter 4, free-vibration analysis of stay cable systems networked with diverse configurations 
of crossties was discussed, and the mode-frequency evolution of each case was investigated. 
Although the mode-frequency information sheds light on some important dynamic properties of 
a cable system, the actual performance of the system under different wind events is difficult to 
assess solely based on such information. A time-history analysis under realistic wind loading 
allows more explicit and detailed information to be obtained about the system’s dynamic 
structural performance. 

To date, the effectiveness of crossties in mitigation of stay cable vibrations was solely assessed 
indirectly in terms of the modal properties of the system. Increases in natural frequencies of a 
cable system have been interpreted as enhancement in mitigation, which is based on the idea that 
the threshold wind speeds triggering certain aerodynamic instabilities (e.g., vortex shedding) are 
proportional to the fundamental natural frequency of the system. However, the performance of a 
cable system under a variety of wind events cannot be deduced from changes in modal properties 
of the system. An explicit time-history analysis of a cable system subjected to time-varying wind 
forces should be conducted to understand the performance of the system and assess the 
effectiveness of a mitigation measure implemented. 

WIND LOADS  

A set of wind profiles was selected and used in the time-history analysis. These profiles are 
based on anemometer data retrieved at the Bill Emerson Memorial Bridge in Cape Girardeau, 
MO. Some profiles were artificially transformed in order to simulate certain wind conditions. 

Figure 97 shows the reference wind speed profile, which will be referred to as “wind-1” 
throughout the current study. The profile represents a 5-min wind speed record measured at the 
Cape Girardeau bridge site, except that the profile is scaled up such that the peak 3-s gust speed 
reaches 98 ft/s (30 m/s). In order to prevent an erroneous oscillation due to suddenly applied 
loading at the beginning (t = 0 s) of the analysis, an artificial ramp of wind loading was added 
between t = 0 and 10 s. The initial velocity of the wind was fully recovered at t = 10 s. 
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Figure 97. Graph. Reference wind speed profile. 

The frequency-amplitude spectrum for this reference profile is shown in figure 98. The profile 
contains large amplitude low-frequency components with a significant static value, which is 
related to a large nonzero mean speed in the time profile. The amplitude gradually decreases  
with increasing frequency, especially for f > 1 Hz.  

 
Figure 98. Graph. Frequency-amplitude spectrum for the wind speed profile shown in 

figure 97. 

Figure 99 shows the wind force profile computed from the wind speed profile shown in  
figure 97. For simplicity, only wind-induced drag force was taken into account in converting  
the wind speed into the wind force. There are a number of mechanisms and conditions that 
contribute to wind pressures on stay cables. It is not always feasible to predict wind pressure on 
stay cables from a given wind speed profile without detailed knowledge of the structural and 
aerodynamic conditions of the cables and wind involved. As a first step, a simplified situation in 
which the drag force is a dominant wind-induced pressure on the stay cables was considered. 
Pressures from other sources, when justified to be present and quantifiable, may be added. The 
wind force (per unit length) profile was applied in the direction of the bridge longitudinal axis, 
inducing in-plane vibration of the cable network (see figure 99). 
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Figure 99. Graph. Wind force based on wind speed profile shown in figure 97. 

To simulate the moving wind, a sequential loading scheme was used (see figure 100). The cable 
network was divided into five zones, and each zone was sequentially exposed to the moving 
wind with a time interval, Τ. For example, zone II was exposed to the same wind force profile 
that zone I was exposed to Τ-second ago. The time interval is estimated by dividing the 
horizontal transverse distance (x) by the average horizontal wind speed (Vavg) of the wind  
profile. For example, T = 1.4 s for x = 90.97 ft (27.734 m) and Vavg = 65.6 ft/s (20 m/s).  

 
Figure 100. Illustration. Sequential wind loading scheme. 

PERFORMANCE UNDER REFERENCE WIND LOAD 

Displacements  

In order to assess the performance of stay cable systems under applied wind loads, displacements 
computed at selected locations were retrieved and compared. Figure 101 shows displacement 
profiles computed at the mid-span of the longest cable of the stay systems under the reference 
wind load (wind-1). Four different crosstie designs (no crossties, one line of crossties, two lines 
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of crossties, and four lines of crossties) were considered. The displacements, Ux, are the 
horizontal components parallel to the bridge axis. 

 
Figure 101. Graph. Displacement computed at the mid-span of cable 1 with no crossties, 

one line of crossties, two lines of crossties, and four lines of crossties. 

Among the four cases considered, the system with two lines of crossties produced the least 
displacement. However, the behavior may depend on the location where displacements were 
retrieved. Figure 102 through figure 104 show the displacement profiles computed at other 
locations within the system: at a quarter-span of the longest cable (figure 102), at the network 
center (figure 103), and at the mid-span of the shortest cable (figure 104). At a quarter-span,  
the system with four lines of crossties had the least displacement, while at the network center,  
the system with two lines of crossties had the least displacement. It is difficult to judge the 
mitigation effectiveness of a crosstied cable network simply by looking at displacements at some 
selected locations. Instead, mechanical energies of a system can be used as a global indicator of 
the performance, as will be discussed later. 
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Figure 102. Graph. Displacement computed at the quarter-span of cable 1 with no 

crossties, one line of crossties, two lines of crossties, and four lines of crossties. 

 
Figure 103. Graph. Displacement computed at the center of the network with no crossties, 

one line of crossties, two lines of crossties, and four lines of crossties. 
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Figure 104. Graph. Displacement computed at the mid-span of cable 16 (the shortest cable) 

with no crossties, one line of crossties, two lines of crossties, and four lines of crossties. 

Displacement profiles in figure 101 and figure 102 were transformed into power spectral density 
(PSD) distributions in the frequency domain. Figure 105 shows the PSD distributions of the 
displacements at the mid-span of cable 1 (the longest cable) for the four different crosstying 
schemes considered. The graphs indicate that at the mid-span of the cable, displacement 
primarily takes place in the first mode of vibration of the networked cable system. The 
frequencies corresponding to maximum displacement PSDs coincide with the fundamental 
natural frequencies of the system, which indicates that a stay system responds in the first few 
fundamental modes to a normal wind loading. 
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Figure 105. Graph. PSD of the displacement at the mid-span of cable 1 with no crossties, 

one line of crossties, two lines of crossties, and four lines of crossties. 

The fundamental (i.e., first mode) natural frequency of the system with no crossties, one line of 
crossties, two lines of crossties, and four lines of crossties are 0.56, 0.87, 1.18, and 1.38 Hz, 
respectively. For the system without crossties, the first-mode frequency of the system coincides 
with the first mode frequency of the longest cable. The system with two lines of crossties 
exhibited small displacement (figure 101), and the corresponding PSD was negligibly small 
compared to other three cases considered (figure 105). Note the large static value (f = 0 Hz) 
registered for the case of no crossties and very limited static component for the system with  
four lines of crossties. 

Figure 106 show PSD distributions of the displacements at the quarter-span of cable 1 for the 
same four crosstying schemes considered. Again, the largest PSD occurred at the first mode of 
each system; however, additional peaks appeared at the second and third mode frequencies. A 
large-value PSD was registered at the fundamental mode for the two-line system. 
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Figure 106. Graph. PSD of the displacement at the quarter-span of cable 1 with  

no crossties, one line of crossties, two lines of crossties, and four lines of crossties. 

Energy Evolution 

Displacement responses retrieved at selected locations within a cable system were observed in an 
effort to assess the effectiveness of crossties in mitigating stay cable vibrations. However, it is 
difficult to view displacements as representing the overall structural performance of a stay 
system. A displacement profile gives information about the structural performance at a particular 
point in a system rather than the whole system. The level of a mechanical energy is often used to 
indicate the mechanical state of a system. Therefore, the evolution of mechanical energies of an 
entire cable system, not just of a single cable, is traced to assess the performance of the system. 
Figure 107 indicates the evolution of potential and kinetic energies of stay systems with different 
crosstying schemes. 
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Figure 107. Graph. Energy evolution of the cable system with no crossties, one line of 

crossties, two lines of crossties, and four lines of crossties. 

In general, crossties are shown to effectively reduce both the potential and kinetic energies of a 
system, which can be interpreted as a reduced vibration. The potential energy is an indicator of 
the mean square of displacement amplitudes, and the kinetic energy is an indicator of the mean 
square of velocity amplitudes. A system with two lines of crossties renders the least energies of 
all. In this particular example, a system with four lines of crossties induces more energy than  
the two-line system and even than the one-line system. The performance of a crosstied  
system depends on the nature of the input wind profile used. Heavily crosstied systems  
tend to induce large vibrations when subjected to wind forces that contain appreciable high-
frequency components. 

PERFORMANCE UNDER OTHER WIND LOADS 

In the previous section, the performance of a stay cable system with different crosstying schemes 
was examined by subjecting the system to the reference wind profile. The findings thus obtained 
may well depend on the type of input wind profiles. For this reason, a number of wind profiles, 
different from the reference, were considered. Relative performance of crosstied cable networks 
under these additional wind profiles were investigated and discussed.  

Definition of Wind Profiles 

In addition to the reference wind profile (wind-1), four other profiles, as shown in figure 108, 
were used in subsequent analysis. Two of the profiles, wind-2 and wind-3, are based on wind 
data recorded on the site. These profiles represent a 5-min wind speed record measured at the 
Bill Emerson Memorial Bridge in Cape Girardeau, MO. The profile is scaled up such that the 

 65 



peak 3-s gust speed reached 98 ft/s (30 m/s). In order to prevent an erroneous oscillation due to 
sudden impact loading at the beginning of an analysis, an artificial ramp was added for t = 0 to 
10 s as for the wind-1 profile. The frequency-amplitude spectrum of wind-2 and wind-3 are 
shown in figure 109. Wind-3 has a quite different spectrum from those of wind-1 and wind-2 and 
contains large near-static low-frequency components. 

The other two profiles, high frequency (wind-hf) and resonance (wind-res), are based on wind-1 
with some modifications applied. In the frequency domain, wind-hf is the same as wind-1 except 
that the amplitudes for f = 1 Hz and above are doubled. Again, in the frequency domain, wind-res 
is the same as wind-1 except that an artificial amplitude spike of 50 is added at the fundamental 
natural frequency (1.38 Hz) of the cable network. These are clearly reflected in the frequency-
amplitude spectrum shown in figure 109 for wind-hf and wind-res. 

The purpose of using the wind-hf profile was to test the vulnerability of a crosstied cable 
network to wind loading containing enhanced high-frequency components. Use of crossties 
increases the natural frequencies of a cable system, which allows the system to effectively  
filter the low-frequency components of the wind. However, the performance of the same  
system under high-frequency (more turbulent) wind should be checked for design purposes.  
The wind-res profile is designed to test the vulnerability of the system to resonant vibrations  
with the input wind.  

 
Figure 108. Graph. Other wind speed profiles used—wind-2, wind-3, wind-hf, and  

wind-res. 
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Figure 109. Graph. Frequency-amplitude spectra of the wind profiles used—wind-2,  

wind-3, wind-hf, and wind-res. 

Response to Wind-2 

Displacement time-histories at the mid-span of cable 1 when the cable system was subjected to 
wind-2 are presented in figure 110 for the four different crosstying schemes. It can be seen that 
the use of crossties greatly reduced cable vibrations. Energy evolution under wind-2 is shown in 
figure 111. Both displacement and energy evolution data indicate that a system with two lines of 
crossties best mitigates cable vibrations induced by wind-2. The four-line system appears to be 
effective in controlling static displacements but not quite in controlling vibration amplitudes. 
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Figure 110. Graph. Displacement computed at the mid-span of cable 1 when the cable 

network is subjected to wind-2 with no crossties, one line of crossties, two lines of crossties, 
and four lines of crossties. 

 
Figure 111. Graph. Energy evolution of the cable system subjected to wind-2 with  
no crossties, one line of crossties, two lines of crossties, and four lines of crossties. 

Response to Wind-3 

Responses of the cable systems to wind-3 are presented in figure 112 for mid-span displacements 
and in figure 113 for energy evolutions. Both sets of figures indicate that the influence of 
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crossties on reducing cable vibrations is significant. Displacement as well as potential and kinetic 
energy levels decreased dramatically. The four-line crosstie system exhibits the lowest energy 
levels among the four cases considered. The wind-3 profile is characterized by large low-
frequency components. The four-line system, with its highest natural frequencies, is most 
effective to deal with low-frequency dominant winds.  

 
Figure 112. Graph. Displacement computed at the mid-span of cable 1 when the cable 

network is subjected to wind-3 with no crossties, one line of crossties, two lines of crossties, 
and four lines of crossties. 
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Figure 113. Graph. Energy evolution of the cable system subjected to wind-3 with  
no crossties, one line of crossties, two lines of crossties, and four lines of crossties. 

Response to Wind-hf 

Displacements under wind-hf are shown in figure 114, and energy evolutions under wind-hf  
are shown in figure 115. It is clear that the mitigation effectiveness of crossties significantly 
decreased when the system was subjected to high-frequency enhanced wind. Benefits of the use 
of crossties appear to be proportional to the quantity of crossties to a certain degree. However, 
further increases in crosstie quantity resulted in increased magnitudes of cable vibration. Under 
an artificial profile, wind-hf, the performance of a cable system gradually improved up until the 
two-line system. However, for the four-line system, the performance became worse. The  
four-line system clearly shows its response sensitivity to high-frequency wind components. 
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Figure 114. Graph. Displacement computed at the mid-span of cable 1 when the cable 

network is subjected to wind-hf with no crossties, one line of crossties, two lines of crossties, 
and four lines of crossties. 

 
Figure 115. Graph. Energy evolution of the cable system subjected to wind-hf with  
no crossties, one line of crossties, two lines of crossties, and four lines of crossties. 

In general, the results suggest that the use of crossties helps mitigate wind-induced stay cable 
vibrations. However, as the quantity of crossties increases beyond a certain threshold, the system 
becomes more vulnerable to high-frequency components of winds. Therefore, the performance 
of a crosstied network is sensitive to the frequency content of wind loading. Crossties are 
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particularly effective in reducing low-frequency components of cable vibrations. Performance  
of a crosstied network is not necessarily proportional to its quantity (or number of lines) of 
crossties. An excessive provision of crossties may result in an adverse effect under highly 
turbulent winds (if present).  

Response to Wind-res 

The displacement of a cable system with four lines of crossties subjected to wind-1 and wind-res 
at the mid-span of cable 1 are shown in figure 116. Figure 117 shows the PSD distributions of 
the displacement profiles shown in figure 116. A noticeable peak is present at the resonant 
frequency (f = 1.38 Hz) of the system when the system is subjected to wind-res. Energy 
evolution, which is presented in figure 118, confirms the fact that a system responds sensitively 
to a wind load containing a finite amplitude at the system’s resonant frequency. 

 
Figure 116. Graph. Displacement at the mid-span of cable 1 when the cable network with 

four lines of crossties is subjected to wind-1 (left) and wind-res (right). 

 
Figure 117. Graph. PSD of the displacement at the mid-span of cable 1 when the cable 
network with four lines of crossties is subjected to wind-1 (left) and wind-res (right). 
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Figure 118. Graph. Energy evolution of the cable network with four lines of crossties 

subjected to wind-1 (left) and wind-res (right). 

It can be seen that a slight magnification of the wind component at the resonant frequency of  
the input wind load results in a dramatically magnified response of the system, which indicates 
the vulnerability of a cable system to resonant wind loading. The system quickly builds up a 
resonant vibration with its limited inherent damping. The addition of dampers may effectively 
lower the potential of such occurrence. 

AXIAL AND SHEAR FORCES 

Peak axial force distribution in cables and crossties is presented in figure 119. Particular 
attention was given to the compressive forces in the crossties to see if they were within the  
pre-tension levels. The axial forces shown do not include pre-tensions applied to the cables and 
crossties during construction. The maximum peak compressive force in the crossties was 5.2 kip 
(23 kN), which is within the applied pre-tension level of 7.9 kip (35 kN). This insures that the 
crossties remain taut throughout the event. The pre-tension level required to prevent the slack of 
the crossties depends on the severity of the design wind event. 

 
Figure 119. Image. Peak axial force distribution under wind-1. 

Peak shear force distribution in cables and crossties is shown in figure 120. Since cables and 
crossties are modeled as beams with transverse stiffnesses, they carry shear forces. Largest shear 
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forces are experienced at the cable supports and at the cable/crosstie junctions, which must be 
taken into account in design of a crosstying system. 

 
Figure 120. Image. Peak shear force distribution under wind-1. 
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CHAPTER 6: TIME-HISTORY ANALYSIS OF STAY CABLES WITH EXTERNAL 
DAMPERS 

INTRODUCTION 

Dampers are frequently used to suppress excessive vibration of stay cables which have limited 
intrinsic damping. These dampers, due to practical limitations of installation, are usually attached 
to the stay cables near the anchorages. Although theories behind the observed behavior of stays 
with attached dampers are not completely developed, dampers have been widely used, and their 
effectiveness has been demonstrated by many examples. Application of dampers for cable 
vibration mitigation is anticipated to be more widespread, and the need for improved 
understanding of the resulting dynamic system is increasing. The effectiveness of different 
strategies involving external dampers and crossties for mitigation of stay cable vibrations is 
investigated via finite element simulations.  

CONFIGURATION AND DAMPER COEFFICIENT 

Figure 121 shows a single stay with a viscous damper attached near the anchorage. The distance 
of the damper from the deck anchorage is 2 percent of the chord length of the cable (d = 0.02 L). 
The stay simulates Cable SWC-01 of the Cape Girardeau Bridge, whose properties are presented 
in table 2 and table 3 (see cable 1). A sequential wind loading on the cable is shown in  
figure 122, in which F(t) denotes the horizontal wind force history shown in figure 99.  

 
Figure 121. Image. Stay cable with a viscous damper attached to it. 

Damper connectd to the deck at d = 0.02L

L

d Damper connectd to the deck at d = 0.02L

L

d
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Figure 122. Image. Sequential wind loading on the cable. 

The optimal damping coefficient (Copt) for the cable is determined from the universal damping 
curve shown in figure 123. This asymptotic analytical curve proposed by Krenk is valid when 
d/L, the relative damper distance from the support, is very small.(15)  

 
Figure 123. Graph. Universal damping curve. 

The curve relates the normalized damping ratio i/(d/L) to the normalized damping coefficient  
( ) defined as follows: 

 
Figure 124. Equation. Normalized damping coefficient. 

Where: 

C = Damper coefficient.  
m = Cable mass per unit length.  
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ω 1 = First mode natural frequency.  
ζ i = Damping ratio of the ith mode of vibration.  
i = Mode number.  

At optimal damping, the normalized damping ratio reaches 0.5 and  approaches 0.1, from 
which C-values are determined for different modes. The achievable modal damping ratios are 
limited by this relationship. For example, for d/L of 2 percent, the achievable maximum damping 
ratio for the first mode is 1 percent. 

RESPONSE TO REFERENCE WIND LOAD 

Figure 125 and figure 126 show the horizontal components of the displacement histories 
computed at the mid- and quarter-span of the stay without and with a damper, respectively. It can 
be seen that the use of a damper reduces the vibration amplitudes of the stay. Figure 127 shows 
the energy evolution of the stay without and with a damper, respectively. Both the potential and 
kinetic energies are reduced due to the incorporation of a damper; however, the reduction of 
kinetic energy is more pronounced than that of potential energy. When damper is not used, the 
energy of the cable is dissipated entirely by intrinsic modal damping. A uniform modal damping 
of 0.3 percent is assumed. When a damper is used, the majority of the energy is dissipated via the 
damper, and only a small fraction of the energy is dissipated via intrinsic damping of the cable.  

 
Figure 125. Graph. Displacement computed at mid-span of the cable without damper (left) 

and with damper (right). 

 
Figure 126. Graph. Displacement computed at quarter-span of the cable without damper 

(left) and with damper (right). 

κ 
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Figure 127. Graph. Energy evolution of the cable without damper (left) and with damper 

(right). 

Figure 128 and figure 129 show the PSD distributions for the displacement profiles computed  
at the mid- and quarter-span of the stay, respectively. Without damper, vibration took place 
primarily in the first and third modes, whereas when a damper was installed, the vibration was 
mostly in the first mode, and only a small trace in the third mode was observed. According to the 
theory, the use of a damper shifts the natural vibration frequencies of the stay; however, in this 
particular example, the amount of shift appears to be very limited. 

 
Figure 128. Graph. PSD for displacement at mid-span of the cable without damper (left) 

and with damper (right). 
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Figure 129. Graph. PSD for displacement at quarter-span of the cable without damper 

(left) and with damper (right). 

Figure 130 shows the energy evolution of a single cable without and with a damper subjected to 
wind-hf. The effectiveness of the use of a damper is more pronounced when a stay is subjected to 
a wind event that contains enriched high-frequency components. In other words, dampers are 
more efficient in mitigating stay vibrations containing appreciable high-frequency components. 
The major portion of the vibration energy is dissipated via the damper. It is to be noted that 
dampers are effective in mitigating transverse and in-plane vibrations when separate dampers are 
installed in the respective directions of motion. 

 
Figure 130. Graph. Energy evolution of the cable under wind-hf without damper (left) and 

with damper (right). 

INFLUENCE OF DAMPER PARAMETERS 

The efficiency of a damper depends primarily on its damping coefficient and its location on the 
stay, among other factors. In order to test the influence of damping coefficient (or damper 
coefficient), four different levels of damping were considered: C = 0 (no damper), C = Copt,  
C = 0.1 Copt, and C = 10 Copt. Results are shown in figure 131, which highlights the evolution of 
the potential and kinetic energy of a cable/damper system subjected to wind-1. Also shown are 
energies dissipated through intrinsic modal damping and through the damper. 
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Figure 131. Graph. Energy evolution of the cable when different levels of damper 

coefficient are used—(a) C = 0 (no damper), (b) C = Copt, (c) C = 0.1 Copt, and (d) C = 10 Copt.  

As can be expected, the cable performed best when the damper had its optimal coefficient,  
C = Copt. Energy levels, especially kinetic energy, are lowest when the optimal value is used.  
It can be seen that with the optimal damper coefficient (see graph b in figure 131), the amount of 
energy dissipated through the damper is greatest, and the demand of energy dissipation through 
the cable’s intrinsic modal damping is minimal. Dissipation by modal damping is proportional to 
kinetic energy due to their dependence on velocity. Therefore, less dissipation by modal damping 
signifies a lower level of kinetic energy, meaning lesser cable vibrations. 

To test the influence of damper location, four different cases were considered. Figure 132 shows 
results for C = 0 (no damper), d/L = 0.02, d/L = 0.05, and d/L = 0.10, where d is the offset 
distance of the damper from anchorage, and L is the chord length of the stay cable. The case of 
d/L = 0.10 gives the largest energy dissipation through the damper, and the achieved kinetic 
energy level is lowest among the four cases considered, signifying its being the most effective in 
vibration mitigation. However, due to practical limitations associated with installation, dampers 
are usually attached to stays near the anchorages.  
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Figure 132. Graph. Energy evolution of the cable when different damper locations are 

used—(a) C = 0 (no damper), (b) d/L = 0.02, (c) d/L = 0.05, and (d) d/L = 0.10. 
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CHAPTER 7: TIME-HISTORY ANALYSIS OF STAY CABLE SYSTEMS WITH 
CROSSTIES AND DAMPERS 

INTRODUCTION 

In the preceding chapters, stay cables networked with transverse crossties or equipped with 
external dampers were analyzed for their dynamic behavior under selected wind events. In this 
chapter, a case in which stay cables were equipped with a combination of crossties and external 
dampers are investigated.  

PERFORMANCE OF STAY CABLE SYSTEMS WITH DIFFERENT MITIGATION 
STRATEGIES 

Figure 133 shows stay cable systems with different mitigation strategies: a system with no 
crossties and no dampers, a system without crossties but with dampers, a system with crossties 
but without dampers, and a system with crossties and with dampers. Dampers were not installed 
on the Bill Emerson Memorial Bridge; however, dampers are included in this study to look into 
their usefulness as an alternate or supplementary mitigation measure for retrofit or new design of 
other similar bridges. The external viscous dampers are attached to the stays near their deck 
anchorages, with d/L ratios ranging from 2 percent (for most cables) to 6 percent (for the shortest 
cable). The damping coefficients (or the C-values) for dampers on individual cables were 
determined from the universal damping curve presented in figure 123.  

 
Figure 133. Image. Stay cable system (a) without crossties or dampers, (b) without crossties 

and with dampers, (c) with crossties and without dampers, and (d) with crossties and 
dampers. 

Figure 134 and figure 135 show the displacement profiles retrieved at the mid- and quarter-span 
of cable 1, the longest cable. The energy evolution of each system considered is shown in  
figure 136. It can be seen from these figures that crossties are efficient in reducing static 
displacements (contributing to the potential energy), while dampers are efficient in reducing 
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vibration amplitudes (contributing to the kinetic energy). Also, it is found that crossties tend to 
induce high-frequency vibrations of a stay system. Incorporation of crossties into a cable system 
adds stiffness to the system, while external dampers provide an additional source of energy 
dissipation. Based on the results shown, it is difficult to judge how much improvement can be 
gained from a combined use of crossties and dampers over the cases of their separate, 
independent uses. 

 
Figure 134. Graph. Displacement profile computed at the mid-span of the longest cable in a 

system (a) without crossties or dampers, (b) without crossties and with dampers, (c) with 
crossties and without dampers, and (d) with crossties and dampers. 

 
Figure 135. Graph. Displacement profile computed at the quarter-span of the longest cable 

in a system (a) without crossties or dampers, (b) without crossties and with dampers,  
(c) with crossties and without dampers, and (d) with crossties and dampers. 
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Figure 136. Graph. Energy evolution of a cable system (a) without crossties or dampers,  

(b) without crossties and with dampers, (c) with crossties and without dampers, and  
(d) with crossties and dampers. 

DETERMINATION OF DAMPER COEFFICIENTS 

It is to be noted that the optimal damper coefficients for cables networked with crossties may not 
necessarily be the same as those determined from stand-alone individual cables. The optimal 
coefficient for a damper is commonly determined from the dynamics of a stand-alone cable to 
which the damper is attached. Incorporation of crossties introduces transverse constraints to 
individual stay cables and forces these cables to behave as a network, which makes it difficult to 
determine the optimal damper coefficient for each cable. No plausible solution to this problem 
has been identified in the literature. 

Further research is needed to determine optimal parameters for dampers installed on stay cables 
networked with crossties. In this analysis, two simple approaches were tentatively taken to 
determining the C-values for dampers attached to networked stay cables. In the first approach, 
referred to as “C-Individual,” each individual cable was viewed as a stand-alone cable for the 
purpose of determining its optimal C-value. In the second approach, referred to as “C-System,” 

1 in figure 124 was interpreted as the fundamental natural frequency of the networked cable 
system, while other parameters in the equation were associated with each individual cable. For 
example, for the cable system with four lines of crossties, 1 = 1.38 Hz.  

The C-values for cable 1 (longest cable) and cable 16 (shortest cable) determined from the  
C-Individual method are 30 and 3.3 kip-s/ft (436 and 48 kN-s/m), respectively. In the C-System 
method, the C-values for cables 1 and 16 are 75 and 2.4 kip-s/ft (1,095 and 35 kN-s/m), 

ω 

ω 
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respectively. Figure 137 and figure 138 compare the results from the displacement and energy 
evolution approaches, respectively. The difference in results from the two methods is negligibly 
small, which suggests insensitivity of the system behavior to small variations of C-values.  

 
Figure 137. Graph. Comparison of displacements at mid-span of the longest cable when 
damper coefficients are used based on individual cables’ natural frequencies (left) and 

when damper coefficients are used based on a cable system’s natural frequencies (right). 

 
Figure 138. Graph. Comparison of energy evolution of the system when damper 

coefficients are used based on individual cables’ natural frequencies (left) and when 
damper coefficients are used based on a cable system’s natural frequencies (right). 

In order to check the system performance under larger variations of C-values, four different 
cases were considered: C = Copt, C = 5 Copt, C = 10 Copt, and C = 100 Copt. Figure 139 compares 
the energy evolution of the cable system when these four different C-values are used. Among the 
four cases tested, C = 5 Copt gives the best result with largest energy dissipation via dampers 
(thus resulting in smallest dissipation demand via cable’s intrinsic modal damping). As the  
C-value further increases, the vibration of the cable system increases. It is to be noted that Copt 
denotes the optimal damper coefficient for a damper attached to a stand-alone stay cable, not a 
networked cable. This experiment suggests that when dampers are attached to stays networked 
with crossties, larger dampers are required than when dampers are attached to stays not 
networked with crossties. 
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Figure 139. Graph. Influence of damper coefficients on system energy evolution when  

(a) C = Copt, (b) C = 5 Copt, (c) C = 10 Copt, and (d) C = 100 Copt. 

PERFORMANCE OF STAY CABLE SYSTEMS UNDER OTHER WIND LOADS 

So far in this chapter, the discussion has focused on a stay cable system subjected to the 
reference wind load, wind-1. The performance of a stay system augmented with crossties and 
dampers was also investigated when the system was subjected to wind-2, wind-3, and wind-hf. 
Figure 140 through figure 142 show the energy evolution of a cable system subjected to these 
wind profiles. Figure 141 and figure 142 indicate that the use of crossties are effective in 
reducing stay vibrations induced by steady winds, while dampers are more effective to control 
vibrations induced by highly turbulent winds. In all cases tested, a combined use of crossties and 
dampers rendered better mitigation effects than their independent uses.  
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Figure 140. Graph. Energy evolution of the cable system under wind-2 (a) without crossties 

or dampers, (b) without crossties and with dampers, (c) with crossties and without 
dampers, and (d) with crossties and dampers. 

 
Figure 141. Graph. Energy evolution of the cable system under wind-3 (a) without crossties 

or dampers, (b) without crossties and with dampers, (c) with crossties and without 
dampers, and (d) with crossties and dampers. 
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Figure 142. Graph. Energy evolution of the cable system under wind-hf (a) without 

crossties or dampers, (b) without crossties and with dampers, (c) with crossties and without 
dampers, and (d) with crossties and dampers. 

STAY CABLE SYSTEMS WITH DAMPERS AT CROSSTIE ANCHORAGES 

Performance of Stay Cable Systems with a Single Damper 

A major drawback of dampers on stay cables is the limited damping effects due to the close 
proximity of dampers to the anchorages. As the offset distance from the anchorage increases, the 
modal damping ratio due to the damper increases. However, practical constraints of installation 
do not allow a large offset distance. An alternative strategy of adding dampers to a networked 
stay system was explored. It involved installing dampers at crosstie connections to the deck, 
which potentially provided large damping ratios that were not achievable otherwise by the 
dampers on stay cables installed near the anchorages. 

Figure 143 shows a stay cable system with crossties and a damper attached to a crosstie 
anchorage. A spring element, with stiffness coefficient (k), was added in order to provide the 
retracting force necessary to restore the damper piston back to its original position after 
displacement. Crossties are a tension element and thus cannot push the damper piston back to its 
original neutral position. The resulting damper/spring assembly constitutes a simplest form of a 
viscoelastic unit, often called the Voigt model.(16) 
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Figure 143. Image. Stay cable system with crossties and a damper attached to a crosstie. 

The energy evolution profiles of the system depicted in figure 143 subjected to wind-1 are  
shown in figure 144 for four different combinations of C and k values: no damper used, 
k = 686 kip/ft (10,000 kN/m) and C = 686 kip-s/ft (10,000 kN-s/m), k = 68.6 kip/ft (1,000 kN/m) 
and C = 68.6 kip-s/ft (1,000 kN-s/m), and k = 686 kip/ft (10,000 kN/m) and C = 68.6 kip-s/ft 
(1,000 kN-s/m). As expected, the effectiveness of mitigation significantly increased.  
This signifies a dramatic improvement over the previous strategy of attaching dampers to  
stay cables. Note that only a single damper was used. Among the four different cases tested,  
k = 68.6 kip/ft (1,000 kN/m) and C = 68.6 kip-s/ft (1,000 kN-s/m) results in lowest kinetic  
and potential energy as well as lowest modal dissipation and highest damper dissipation. 
Determination of an optimal combination of C and k values does not appear to be straight-
forward and requires further research. 

 
Figure 144. Graph. Energy evolution of the cable system shown in figure 143 (a) when no 
damper was used, (b) k = 686 kip/ft (10,000 kN/m) and C = 686 kip-s/ft (10,000 kN-s/m),  

(c) k = 68.6 kip/ft (1,000 kN/m) and C = 68.6 kip-s/ft (1,000 kN-s/m), and (d) k = 686 kip/ft 
(10,000 kN/m) and C = 68.6 kip-s/ft (1,000 kN-s/m). 
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Performance of Stay Cable Systems with Multiple Dampers 

Multiple dampers attached to crosstie anchorages, as depicted in figure 145, were also 
investigated. Figure 146 shows the results for the four different combinations of C and k values. 
For simplicity, all four dampers have the same C and k values. Use of multiple dampers certainly 
mitigates stay vibrations even more effectively than a single damper.  

 
Figure 145. Image. Stay cable system with crossties and four dampers attached to crosstie 

anchorages. 

 
Figure 146. Graph. Energy evolution of the cable system shown in figure 145 when (a) no 
damper was used, (b) k = 686 kip/ft (10,000 kN/m) and C = 686 kip-s/ft (10,000 kN-s/m),  

(c) k = 68.6 kip/ft (1,000 kN/m) and C = 68.6 kip-s/ft (1,000 kN-s/m), and (d) k = 686 kip/ft 
(10,000 kN/m) and C = 68.6 kip-s/ft (1,000 kN-s/m). 

COMPARISON OF DIFFERENT MITIGATION STRATEGIES 

Figure 147 shows stay cable systems with four different mitigation strategies: crossties only, 
dampers only, crossties and dampers on stay cables, and crossties and dampers at crosstie 
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anchorages. Resulting displacement profiles and energy evolutions for these cases under wind-1 
are given in figure 148 through figure 150. Among the four strategies considered, the one with 
dampers at crosstie anchorages provides the most efficient vibration control. Further research is 
warranted to delineate detailed design issues of the newly identified strategy of crosstying stay 
cables and adding dampers at the crosstie anchorages. 

 
Figure 147. Image. Stay cable system (a) with crossties and without dampers, (b) without 
crossties and with dampers, (c) with crossties and dampers on stay cables, and (d) with 

crossties and dampers at crosstie anchorages. 
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Figure 148. Graph. Displacement profile computed at mid-span of the longest cable  

(a) with crossties and without dampers, (b) without crossties and with dampers, (c) with 
crossties and dampers on stay cables, and (d) with crossties and dampers at crosstie 

anchorages. 

 
Figure 149. Graph. Displacement profile computed at quarter-span of the longest cable  
(a) with crossties and without dampers, (b) without crossties and with dampers, (c) with 

crossties and dampers on stay cables, and (d) with crossties and dampers at crosstie 
anchorages. 
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Figure 150. Graph. Energy evolution of a cable system (a) with crossties and without 

dampers, (b) without crossties and with dampers, (c) with crossties and dampers on stay 
cables, and (d) with crossties and dampers at crosstie anchorages. 
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CHAPTER 8: CONCLUSIONS 

A study on wind-induced vibration of stay cables equipped with different types of mitigation 
measures was conducted through numerical simulations and analyses. The use of transverse 
crossties, external dampers, and a combination of the two as mitigation measures were analyzed 
with respect to their relative merits and shortcomings. Explicit time-history analysis of the 
behavior of stay systems subjected to realistic wind events was performed as well as a sensitivity 
study to assess the influence of parameters involved in the design of these measures. The 
following summary highlights the findings and conclusions drawn from the current study:  

• Crossties, in general, are effective in the mitigation of in-plane vibration of stay cables. 
However, the performance of a crosstied cable network is sensitive to the frequency 
contents of the input wind profile.  

• Crossties are particularly effective in suppressing cable vibrations induced by wind 
events containing appreciable low-frequency components.  

• The performance of a crosstied stay cable system is not necessarily proportional to the 
quantity (or the number of lines) of crossties. Excessive provision of crossties potentially 
makes the system susceptible to large-amplitude vibrations under highly turbulent  
wind events. 

• Oversized (or large diameter) crossties make the system overly rigid, rendering the 
system vulnerable to high-frequency local vibration modes. Crosstie grounding increases 
the natural frequencies of the system’s global modes of vibration. 

• In-plane performance of a crosstied cable network is insensitive to the pre-tension level 
of crossties as long as this pre-tension level is high enough to prevent slackening of 
crossties under design wind events. Out-of-plane performance, however, is affected by 
the pre-tension level of crossties. 

• External dampers, in general, are effective in suppressing stay cable vibrations via 
dissipation of vibration energies of the stay system. However, the efficiency of dampers 
depends on the spectral properties of the input wind profile. 

• Viscous dampers are particularly effective in controlling stay cable vibrations induced by 
highly turbulent wind flows containing appreciable high-frequency components.  

• The effect of a combined use of cable crossties and external dampers is not necessarily 
the sum of the effects of their independent uses, its efficacy depending on the layout of 
the crossties and dampers and on the spectral properties of input wind profiles. 

• The optimal coefficients of dampers attached to stay cables networked with crossties 
cannot be determined from the dynamics of individual cable-damper systems. Further 
research may be needed to develop a practical method for estimating optimal damper 
coefficients for networked cables.  

95 



• External dampers installed at crosstie connections to the deck are found to be very 
efficient in dissipating the vibration energies of a crosstied stay system, constituting an 
excellent mitigation alternative.  
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CHAPTER 9: RECOMMENDATIONS FOR FUTURE RESEARCH 

Future research in the following areas addressing some of the remaining issues would positively 
supplement the current project: 

• Research on the combined use of external dampers and cable crossties: In particular, 
viscous dampers attached to the crosstie anchorages have been identified as a potentially 
efficient mitigation strategy. This strategy needs to be further investigated before the 
concept can be transformed into a mitigation measure that can be implemented. For 
example, determination of optimal damper coefficients and spring constants (for 
retraction springs) is one of the issues that needs to be resolved. 

• Research on other potentially viable types of external dampers: Viscous or hydraulic 
dampers have been most commonly specified as external dampers for controlling stay 
cable vibrations. Despite their widespread use, viscous dampers have been reported to 
have weaknesses in terms of long-term durability and maintenance requirements. Other 
types of dampers, such as viscoelastic dampers and friction dampers, have certain 
strengths over viscous dampers and have been successfully used in other areas of 
application including wind mitigation of high-rise buildings and seismic mitigation of 
highway bridges. For example, viscoelastic solid dampers are known to offer optimal 
damping for a broad range of frequencies (or vibration modes), and friction dampers offer 
threshold vibration amplitudes below which dampers remain unengaged, resulting in 
elongated longevity of the dampers. Viscoelastic solid dampers and friction dampers are 
generally viewed as less demanding in terms of maintenance requirement than  
viscous dampers. 

• Development of a set of additional input wind profiles and testing the effectiveness 
of the mitigation strategies under these profiles: The effectiveness of various vibration 
mitigation strategies have been tested using a limited number of input wind profiles. 
Expanding the scope of wind profiles would allow more reliable conclusions to be drawn 
regarding the effectiveness of such mitigation strategies. 

• Research on the parametric vibration of a cable/deck/tower system: Current research 
is based on the simplifying assumption that the deck and tower are fixed or immovable 
with respect to stay cables. Recent studies by others suggest that the vibration of the 
bridge deck or tower could significantly affect the vibration of stay cables subjected to 
wind flow. Finite element analysis of an extended domain including the deck, tower, and 
stay cables may be carried out by expanding the existing analysis model. Clarification of 
this issue would add a substantial value to the current research study. 
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